C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

نویسنده

  • Frédérique C. Pivot
چکیده

RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31 incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen) when not attenuated by vegetation (e.g., forested and transition). With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less) observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

محاسبه تغییرات نقشه‌های پوشش برفی تهیه شده از تصاویر ماهواره‌ای MODIS در دوره‌های فاقد تصویر

‏Snow is a huge water resource in most parts of the world. Snow water equivalent supplies 1/3 of the water requirement for farming and irrigation throughout the world. Water content estimation of a snow-cover or estimation of snowmelt runoff is necessary for Hydrologists. Several snowmelt-forecasting models have been suggested, most of which require continuous monitoring of snow-cover. Today mo...

متن کامل

محاسبه تغییرات نقشه‌های پوشش برفی تهیه شده از تصاویر ماهواره‌ای MODIS در دوره‌های فاقد تصویر

‏Snow is a huge water resource in most parts of the world. Snow water equivalent supplies 1/3 of the water requirement for farming and irrigation throughout the world. Water content estimation of a snow-cover or estimation of snowmelt runoff is necessary for Hydrologists. Several snowmelt-forecasting models have been suggested, most of which require continuous monitoring of snow-cover. Today mo...

متن کامل

Monitoring of the Snow Cover with a Ground-based Synthetic Aperture Radar

The feasibility of retrieving changes in the depth of snow cover by means of the LISA (LInear SAR) Ground-Based Synthetic Aperture Radar system has been investigated. The LISA instrument consists of a computer-controlled sledge moving along a linear axis 5 m long, a set of transmit and receive antennas, a network analyzer, and a C-Band amplifier. All the equipment is installed inside a temperat...

متن کامل

SAR Remote Sensing of Snow Parameters in Norwegian Areas — Current Status and Future Perspective

The paper presents results from a series of European and national projects on remote sensing of snow parameters. Currently, satellite borne syntethic aperture radar (SAR) data are only available at C-band frequencies. Other frequencies such as L-band or Ku-band may be favorable in several snow applications, but current C-band SAR may still be used and further developed to a more mature level. I...

متن کامل

Global Snow Signature in Ku-Band Backscatter

We present Ku-band backscatter signatures of snow for applications to global snow monitoring with NASA Scatterometer (NSCAT) on the ADEOS satellite and the SeaWinds scatterometer on the QuikSCAT satellite. We carried out the 1999 Alaska Snow Experiment to study the relation between Ku-band backscatter and snow physical properties. The experimental results are applied to interpret backscatter da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012